Seismic Analysis & Design of RCC Building

Miss. Kavita K. Ghogare Department of Civil Engineering COET, Akola kavitaghogare19@gmail.com

Abstract-In India RCC structures are most commonly used in the construction area. Therefore, RCC structures are economical and convenient in all over the India. This paper work describes the seismic analysis and design of RCC building subjected to dead load, live load and earthquake load. For paper work the equivalent static analysis is carried out for multi-storey RCC building is done . The seismic analysis & design of multi-storey RCC building is carried out using Software Computer Aided Design i.e., (STAAD PRO 2007). The main parameters consider for comparing seismic performance of buildings are bending moment ,shear force ,deflection and axial force. The seismic design of building frame presented in this paper is based on IS:1893:2002and IS:456:2000. The building consists of four (GF+3)storey. The selection of arbitrary sections has been done following a standard procedure.

Keywords-RCC structure, multi-storey, Seismic Forces

1. INTRODUCTION

In India reinforced concrete structures are most commonly used in construction industry. It has always been a human aspiration to create taller and the taller structures. Development of metro cities in India there is increasing demand in high rise building. The reinforced cement concrete moment resisting frames in filled with unreinforced brick masonry walls are very common in India and in other developing countries. Masonry is a very commonly used material in construction all over the world for the reason that includes accessibility, functionality and cost. RCC structures are very strong and carry maximum forces. RCC structures have long life. After the construction there is no need of maintenance for a long period.

2. SCOPE

Over here the study is done for seismic analysis & design of RCC building subjected to seismic load. The analysis is done for stresses, bending moments, deflections and axial forces as per grid formation methodology.

3. DESIGN PHILOSOPHY

Before we proceed with the actual analysis and design of structure following points are considered -

- 1. The structural system and type
- 2. The choice of an open or covered structure
- 3. The selection of the construction material

- 4. The location, ground conditions i.e., geography of the area
- 5. The method which is used
- 6. The design concept
- 7. IS codes used

With the use of proper method, IS code and also all analysis and design done by STAAD PRO.

4. EXPERIMENTAL WORK

Problem considerations:

Design is done for a RCC building for the following data: Overall length of the building = 15 m Overall width of the building = 30 m Spacing of the frame members =5 m Height of column = 5 m The building is located in residential area, Akola. Use concrete of grade M_{20} steel of grade Fe_{415} . DL & LL are on the assumption basis.

STAAD PRO:2007 Details :

Number of Nodes	80	Highest Node	80
Number of Elements	160	Highest Beam	160

Secti	on Properties				Overall width of the building = 30 m Spacing of the frame members = 5 m
Pro p	Section	Area (cm ²)	$\mathbf{I}_{\mathbf{y}\mathbf{y}}$ (cm ⁴)	I _{zz} (cm ⁴)	Height of column = 5 m J The building is located in residential area, Akola. (cm ⁴) Use concrete of grade M ₂₀ steel of grade Fe ₄₁₅ .
$\frac{1}{2}$	Rect 0.40x0.35 Rect 0.45x0.35	1.4E 3 1.57E 3	143E 3 161E 3	187E 266E	272E CO 338E CO ole design is done in STAAD PRO Software
					using IS:456:2000

Densi

ty

(kg/m³

)

7.83E

2.71E

2.4E

ν

0.300

0.330

0.170

α (1/°K)

Materials

Name

STEEL

ALUMINUM

CONCRETE

Ε

(kN/m

 m^2)

205.00

68.948

21.718

Mat

3

4

5

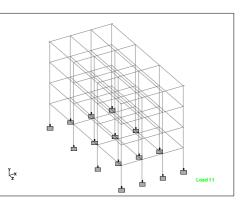
For analysis and design static method is adopted.

In this paper the above example solved and all analysis & design is done.

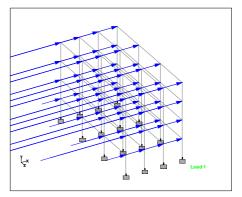
Table shows the results from solving above example.

All the results of analysis and design are obtained using basic load cases and their load combinations with the help of STAAD PRO
10E -6 Software only.

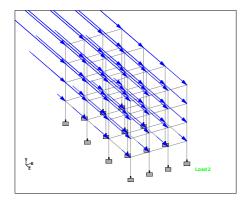
STAAD Model


Node	X
	(kN/mm)
1	Fixed
2	Fixed
3	Fixed
4	Fixed
21	Fixed
22	Fixed
23	Fixed
24	Fixed
41	Fixed
42	Fixed
43	Fixed
44	Fixed
61	Fixed
62	Fixed
63	Fixed
64	Fixed

5. RESULT AND OBSERVATION


Example was taken under consideration with dimensions and material grade as follows –All the values of constant are calculated using IS:1893:2002 and IS:456:2000.

Design is done for a RCC building for the following data:


Overall length of the building = 15 m

3D View of RCC Building

EQX

EQZ

Basic Load Cases

Number	Name
1	ELX
2	ELZ
3	DL
4	LL

Combination Load Cases :

Comb.	Combination	Prima	Primary	Factor
	L/C Name	ry	L/C	
			Name	
5	COMBINATI	3	DL	1.50
		4	LL	1.50
6	COMBINATI	3	DL	1.20
		4	LL	1.20
		1	EQX	1.20
7	COMBINATI	3	DL	1.00
		4	LL	1.00
		1	EQX	-1.20
8	COMBINATI	3	DL	1.20
		4	LL	1.20
		2	EQZ	1.20
9	COMBINATI	3	DL	1.20
		4	LL	1.20
		2	EQZ	-1.20
10	COMBINATI	3	DL	1.50

		1	EQX	1.50
11	COMBINATI	3	DL	1.50
		1	EQX	-1.50
12	COMBINATI	3	DL	1.50
		2	EQZ	1.50
13	COMBINATI	3	DL	1.50
		2	EQZ	-1.50
14	COMBINATI	3	DL	0.90
		1	EQX	1.50
15	COMBINATI	3	DL	0.90
		1	EQX	-1.50
16	COMBINATI	3	DL	0.90
		2	EQZ	1.50
17	COMBINATI	3	DL	0.90
		2	EQZ	-1.50

Beam Displacement Detail Summary

	Bea	a L/C		Resultan
	m		(m)	t
				(mm)
Max X	141	10:COMBINATION		43.888
Min X	144	11:COMBINATION		43.889
Max	(146	2:EQZ		8.347
Min Y	122	5:COMBINATION		17.835
Max Z	11	12:COMBINATION		54.210
Min Z	95	13:COMBINATION		54.211
Max Rst	126	12:COMBINATION		55.425

Beam End Displacement Summary

	Beam	Nod	Resultant
	Deam	e	(mm)
Max X	38	37	42.668
Min X	40	40	42.669
Max Y	38	37	28.412
Min Y	38	38	3.712
Max Z	10	18	54.111
Min Z	94	78	54.111
Max Rst	10	18	54.111

Beam End Force Summary

	Be	No	L/C	Axial	She	ar	Torsio	Ben	ding
	am	de		Fx	Fy	Fz	Mx	My	Mz
				(kN)	(kN	(k	(kNm)	(kNm	(kNm)
)	N))	
Max	42	22	5:COM	1.1E 3		-	-0.000	2.260	0.359
Min	41	21	1:EOX	-		-	-0.198	0.011	
Max	145	45	5:COM	-			0.000	-	
Min	113	25	5:COM	-	•	-	-0.000	-	
Max	18	6	9:COM				-0.113	-	0.615
Min	102	66	8:COM			-	0.113		0.615
Max	117	9	10:CO	4.182			0.771	-	
Min	149	49	10:CO	4.182		-	-0.771	4.191	
Max	102	66	8:COM			-	0.113		0.615
Min	18	6	9:COM				-0.113	-	0.615
Max	114	26	8:COM	-	1		0.000	0.166	
Min	43	23	11:CO		-	-	0.150	1.188	-

6. CONCLUSION

In this paper ,for analysis and design purpose the total four frames are considered. Whole analysis and design is done for inner and outer frames. The values of forces are obtained by considering inner & outer frames . For the final results beam end forces i.e., axial forces are taken out. These values of forces are maximum for load combination 1.5(DL+LL) only and for remaining conditions these values are small with including the seismic forces as shown in tables. Comparative Study of Axial Forces on 1st Outer Frame

LOAD		AXIAL
COMBINATION		FORCE
1.5(DL+LL)	Max +ve	N/A
	Max -ve	-3.548
1.5(DL+LL)	Max +ve	N/A
	Max -ve	-3.567
1.5(DL+LL)	Max +ve	N/A
	Max -ve	-3.548
1.5(DL+LL)	Max +ve	0.277
	Max -ve	N/A
1.5(DL+LL)	Max +ve	N/A
	Max -ve	-0.063
1.5(DL+LL)	Max +ve	0.277
	Max -ve	N/A
1.5(DL+LL)	Max +ve	0.242
1.5(DL+LL)	Max +ve	0.274
	Max -ve	N/A
1.5(DL+LL)	Max +ve	0.242
	Max -ve	N/A
1.5(DL+LL)	Max +ve	7.386
	Max -ve	N/A
1.5(DL+LL)	Max +ve	7.486
	Max -ve	N/A
1.5(DL+LL)	Max +ve	7.386
	Max -ve	N/A
	1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL) 1.5(DL+LL)	COMBINATION 1.5(DL+LL) Max +ve Max -ve 1.5(DL+LL) Max +ve Max -ve 1.5(DL+LL)

Comparative Study of Axial Forces on Last Outer Frame

BEAM	LOAD		AXIAL
	COMBINATION		FORCE
1	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.548
2	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.567
3	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.548
4	1.5(DL+LL)	Max +ve	0.277
		Max -ve	N/A
5	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.063
6	1.5(DL+LL)	Max +ve	0.277
		Max -ve	N/A
7	1.5(DL+LL)	Max +ve	0.242
		Max -ve	N/A
8	1.5(DL+LL)	Max +ve	0.274
		Max -ve	N/A
9	1.5(DL+LL)	Max +ve	0.242
		Max -ve	N/A
10	1.5(DL+LL)	Max +ve	7.386
		Max -ve	N/A
11	1.5(DL+LL)	Max +ve	7.486
		Max -ve	N/A
12	1.5(DL+LL)	Max +ve	7.386

BEAM	LOAD		AXIAL
	COMBINATION		FORCE
57	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.563
58	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.582
59	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.563
60	1.5(DL+LL)	Max +ve	0.355
		Max -ve	N/A
61	1.5(DL+LL)	Max +ve	0.02
		Max -ve	N/A
62	1.5(DL+LL)	Max +ve	0.355
		Max -ve	N/A
63	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.247
64	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.341
65	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.247
66	1.5(DL+LL)	Max +ve	7.811
		Max -ve	N/A
67	1.5(DL+LL)	Max +ve	8.034
		Max -ve	N/A
68	1.5(DL+LL)	Max +ve	7.811

Comparative Study of Axial Forces on 1^{ST} Inner Frame

BEAM	LOAD		AXIAL
	COMBINATION		FORCE
29	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.563
30	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.582
31	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-3.563
32	1.5(DL+LL)	Max +ve	0.355
		Max -ve	N/A
33	1.5(DL+LL)	Max +ve	0.02
		Max -ve	N/A
34	1.5(DL+LL)	Max +ve	0.355
		Max -ve	N/A
35	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.247
36	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.341
37	1.5(DL+LL)	Max +ve	N/A
		Max -ve	-0.247
38	1.5(DL+LL)	Max +ve	7.811
		Max -ve	N/A

Comparative Study of Axial Forces on Last Inner

Frame

REFERENCES

- [1] IS:1893(Part 1):2002 , " Criteria for Earthquake Resistant Design of Structures".
- [2] IS:1893(Part 4):2005 , " Criteria for Earthquake Resistant Design of Structures".
- [3] IS 456-2000" Plain and Reinforced concrete. Code of practice"
- [4] Anis N. Shah, Dr. P. S. Pajgade ," Comparision of RCC & Composite multistoried buildings", IJERA-Vol 3, Issue 2,2013.
- [5] Syed Rehan,S.H.Mahure "Study of seismic and wind effect on multi storey RCC, Steel and Composite building", IJEIT- Vol 3,Issue 12,2014.
- [6] IS:800:2007, "Code of practice for General Construction of Steel".
- [7] General provision and building, New Delhi, India

- [8] Comparative study of rcc ,steel and composite (G+30 storey) building by D.R.Panchal and P.M.Marathe.
- [9] Tao LI, Junichi SAKAI and Chiaki Matsui.(seismic behavior of steel concrete composite column bases.IN12WCEE 2000)
- [10] Saptadipsarkar (2011)"design of earthquake resistant multi-storied rcc building on sloping ground"2011